
—

~ii1~1~
IE~~ AVY~~ ORTR ~~~~ ALID ATION SYSTEM) ,~
~~~~~~~~~~~ tr i ck  n ./Ho~~IJ ‘7 ‘2 /Department olE the Navy L..~Washington , D. C. _______-

ABSTRACT~7~~~~~~~~~~~~~~~~
R 77/J1/

The FORTRAN Compiler Validation System (FCVS) developed by

the Department of the Navy tests the conformance of those ele—

ments of the }ORTRAN language which are contained in the logical

intersection of the American Standard FORTRAN, X3.9—1966, and

the elements proposed for the subset language in the draft pro-

posed American National Standard Programming Language FORTRAN.

This paper discusses the development of the FORTRAN Compiler

Validation System and presents the rationale for the FCVS. The

design criteria for the FCVS and a description of the test pro-

duction is explained . The capabilities of the Executive System

are described as well as the future developments anticipated for

the FCVS because of the adoption of the revised FORTRAN Standard

and the iapact of the CODASYL FORTRAN Data Base Facility.

~1DDC1 !  
~ 

- 

_ _ _ _  

_ _

‘p  [~bISTBIBUT1ON STATEMENtA11

~~~~~~~~~~~~~~~~~~ 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

1
Pbo

~~
d f0T

~~~
bhj
~~
8150h1

~~~1/ - - 
Distribution__Unhmded

.~
~~ ~ i/ ~ ~ ~~~



BISLIOGRAPHIC DATA 
I FcCT~h~R— I;,18 ~~~~ - 

3.54(cc ipieot c Aeve~8i

4. Tit le ~nd Subt itle 5. Report Date
The Navy FORTRAN Validation System .- 9 May 1977 .

7. Author (s) 8. Perform ing Organi z~~~~~~~~~
Patrick M. Hoyt No.

9. Perlorming Organization Name and Address 10. Project/ Task/ W ork t~~~N0.
Software Development Division _____________________

Department of the Navy 11. Contrac t / Grant  No.

ADPE Selection Office
Washington ,_D._ C._ 20376 _______________________

12. Sponsoring Organization Name and Address 13. Type of Report & Period
ADPE Selection Office Covered

Department of the Navy ______________________

Washington, D. C. 20376 14.

15. Supplementary Notes

1 Abstracts
5The FORTRAN Compiler Validation System (FCVS) developed by the Department of the

Navy tests the conformance of those elements of the FORTRAN language which are
contained in the logical intersection of the American Standard FORTRAN , X3.9— 1966 ,
and the elements proposed for the subset language in the draft  proposed Americap
National Standard Prograimuing Language FORTRAN .

j This paper discusses the development of the FORTRAN Compiler Validation System
( and presentssthe rationale for the FCVS. The design criteria for the FCVS and

a description of the test production is explained . The capabilities of the
Executive System are described as well as the future developments anticipated
for the FCVS because of the adoption of the revised FORTRAN Standard and the
impact of the CODASYL FORTRAN Data Base Facility.

17. Key Words and Document Analysis. 170. Descriptors 
—

FORTRAN
Validation
Software
Audit Routines -— - .
Verifying
Compilers
Standards
Programming Languages

lib. Identifiers/Open-Ended Term.

lie. COSATI Field/Group

1$. Availability &atement 19. Security Class (This 21. No. of Pages
Report ) 26Lfl~CLA SSlF1F1)

Rale*ie Unlimited 20. Security elsa. ~Thj . 22. Price

fJNCI ASSIFIED
ro~u 14T 1$.$5 IN(V . ~~~ 

— 
THIS FORM MAY BE REPRODUCED U$COMM~OC 14552 -P72

a-



-.~~~~--

5;

INTRODUCTION

FORTRAN is one of the oldest of the higher level programming

languages with its roots in IBM in 19541. Standardization for

the FORTRAN language began in May 1962 under the direction of the

American Standards Association Couunittee X3.4.3.* In 1966, two
I

standards were published for the FORTRAN language: American

Standard FORTRAN, X3.9—1966
2 
and American Standard Basic FORTRAN ,

X3.lO—l966, which is a proper subset of the first Standard.

*The American Standards Association (ASA) has since changed its

name to the American National Standards Institute, Inc. (ANSI).

The FORTRAN Committee is now known as X3J3.

The FORTRAN Compiler Validation System (PCVS) developed by

the Department of the Navy tests the conformance of those elements

of the FORTRAN language which are contained in the logical inter—

section of the American Standard FORTRAN, X3.9—1966, and the

simmente proposed for the subset language in the draft proposed

American National Standard Programming Language FORTRAN3.

One of the principal reasons for developing validation systems 
-—

is the principal criteria given for developing the FORTRAN Stan—
¶ dard : “Interchangeability of FORTRAN programs between pro— “i $‘~~“

cesiIors”3, The FCVS was developed as a tool. to enabl, users to 
____

Iv ..—~—....
~~~~Ni. .t~v rIPS.

_ __

• ~~~~

.

• . .

_ _ _ • • :_ _ - -~ ~~~~~~~ . - . _: [. [_ ..~~. .

•
~~ ~~~ -

. . •r , • •
~~~ 

•.
~~~ - • 

S

•

-
.

.,.

,
•

•
-

.

.

•c • -

acquire FORTRAN compilers which meet. the ANSI language specif i—

cations. The availability of FORTRAN compilers conforming to the

Standard enhances the interchangeability of FORTRAN programs.

The FCVS consists of FORTRAN audit routines, their related

test data, and an executive routine (EXECUTIVE) which prepares

the audit routines for compilation and execution. Each audit

• routine consists of series of tests of FORTRAN language elements,

and supporting procedures which indicate the result of executing

these tests. Because the routines were designed to run on any

computer system purporting to support FORTRAN, the assumptions

used to write the audit tests are very restrictive. Only the
‘

simplest forms of GO TO Arithmetic IF, WRITE, and assignment

statements are used to write the support code required for each

test. A complete discussion of the FCVS test philosophy and a

full description of each of~ the language element tests are con-

tained in the document FCVS DETAILED TEST SPECIFICATIONS.

A SOURCE PROGRAMS file of audit routines with appropriate

implementor—defined parameters inserted into the source code is

produced by the EXECUTIVE. The EXECUTIVE is a FORTRAN program

included in source form in the FCVS LIBRARY. Once installed ,

the EXECUTIVE is used each time that an audit routine or series

of audit routines is selected from the FCVS LIBRARY. Basic

Inputs to this process are the PCVS LIBRARY (a file of all of

th. audit routines, the EXECUTIVE and related test data), and

4

I
S

I

a series of control inputs to select and/or update the audit

routine source code.

A FORTRAN compiler , in a particular computer configuration/

operating system environment, is tested by the compilation and

execution of each audit routine. If a compiler rejects some

language element by giving fatal diagnostic messages or termina-

ting the compilation , then the EXECUTIVE is used to eliminate the

source code containing that language element. The audit routine

is then recompiled and executed. Output reports (TEST RESULTS)

produced by the execution of each routine indicate whether the

code generated by the compiler passed or failed each test of

the routine. The TEST RESULTS together with the compilation

listings constitute the raw data from which the Department of the

Navy produces a Validation Summary Report (VSR) . The VSR itemizes

the areas where the FORTRAN compiler being tested does not con-

form with the American National Standard FORTRAN specifications.

HISTORY

A study of available FORTRAN validation systems was per-

formed in August 1973. This study analyzed the U. S. Navy

FORTRAN tests developed by Captain Grace Hopper of the Navy

Pro$r. 4ng Languages S c tion5, and the National Bureau of Stan-

dards .VORTRAN tests developed by F. E. Holberton and 1. 0.

Parker6 The study concluded tha t the major flaws in these

validation routines were that .1.1 the test results were
listed4

_________________________ _ _ _ _ _ _ _ _ _ _ — .~~~~
___—

~~~~~~~~~~~~~~~~~ —-----

S - S •  . . S - .— . . - - -

on a printer and required careful examination of the test results

by the user , and these test routines requ ired many manual changes

to the source code when preparing them for execution on a given

computer system.

At this time it was decided that the FCVS developed by the

Software Development Division must evaluate the results of the

language tests within the tests themselves, and print PASS or

FAIL for each test in the same manner as the COBOL Validation

System. In. 1973 a three stage project was designed to: S

(1) extract and modify existing tests and routines;

(2) add PASS/FAIL/DELETE support code to make the

routines self—measuring ; and

(3) build a complete FORTRAN validation system based

on a set of simple assumptions and the self—

measuring techniques used in implementing the

second stage.

Due to lack of available resources, the FCVS project remained
in abeyance until February 1975 when the decision was made to
pursue the third stage as the initial effort . The scope of the

~~~~ project was to adequately test all of the elements of th.

FORTRAN language based on the specifications in American Standard

FUSTIAN, 13.9—1966.

VIVILOP~~~? OF THE TCVS
-

.
S

~xjj

.

S

~~~ ~~~ project was broken into f ive major ~ as follows :



— . T..
~~~

-. ; . .. - -

S

.

1. Systems Analysis and Design Phase —

0 develop the matrix of language elements to

be tested

° develop the list of basic test assumptions,

programming and naming conventions , EXECUTIVE

S routine functions and requirements , test and

implementation procedures .

2. Program Analysis and Design Phase —

° produce detailed specifications for each audit -

routine.

3. Coding and Debugging Phase —

• write boiler plate for TEST RESULTS fo rmat

• code three programs to test the basic assumptions

• code and debug an estimated thirty elementary

routines
-

• code and debug an estimated twenty advanced

routines

test data to be prepared as required.

4. Integration and Testing Phase —

write detailed specifications for the EXECUTIVE,

then code and debug the EXECUTIVE routine

• Integrate the EXECUTIVE, audit routines and

any test data onto the FCVS LIBRARY
-

.

- test th. f inal integrated PCVS as a syst .

6

5. Documentation and Release Phase —

0 update all documentation to reflec t f inal FCVS

specifications then release and distribute

through NTIS.

Based on this scope of the FCVS project , eighteen (18)

manmonths were estimated for completion of the project. Two

computer specialists were assigned to share equally the respon-

sibilities of the entire project. It was estimated, based on the

experience gained in developing the CCVS74 audit routines, that

the two computer specialists could devote half of their available

- time to the project. The FCVS project was to begin October 1975

and was scheduled for completion on 1 July 1976.

Work proceeded on schedule until January 1976. Very little

progress was made on the FCVS during January and February 1976 as

the available manpower was devoted to higher priority projects.

In March 1976, two major decisions were made. The number of tests

In any one routine were limited to thirty (30), since the TEST

RESULTS report could then be printed on a single page (approximately

56 lines). Th. draft proposed American Standard FORTRAN (X3J3 —

pending), which had been 4istributed for public comment , was

analyzed with respect to the language elements identified in

American Standard FORTRAN, 13.9—1966. It was decided that the

PCVS version 10 then being developed would tea t the conformance
‘1

7

— 5— - ——.—-—- — ---—— - — ——S.— _~~__5S
—

of those elements of the FORTRAN language which are contained in

the logical intersection of American Standard FORTRAN , X3.9—1966,

and the elements proposed in the subset language of the draft

proposed American Standard Programraing Language FORT RAN . The

previous arbitrary classification of elementary versus advanced

language elements was deemed obsolete since the proposed Standard

contained a subset language.

The FCVS was designed to build the statement tests from a

basic set of FORTRAN language features which are assumed to

function correctly. The remaining language fea tures are tested

using these basic language elements . The assumptions were made

with the goal that these routines would be executable on most

minicomputer systems as well as on the larger computer configura-

tions.

The basic assumptions are listed below and the references to

13.9—3 966 are enclosed in parentheses .

(1) Six character symbolic names (3.5 and 10.1) and

five digit statement labels (3.4) are permitted.

(2) Comment lines (3.2.1) do not affect a program ix~

any way . -

-

(3) Execution of the unconditional CO TO statement

- (7.1.2. 1.1) CO TO k causes the statement identified

by the Statement label k to be the next statement

executed.

8
S S~~~~~~~ 5 S - S -

-

P .
t

(4) Branching to a CONTINUE statement (7 .1 .2.6) causes

the statement following the CONTINUE statement to

be the next statement executed .

(5) The assignment statements (7.1.1.1)

integer var iable integer constant (5.1.1.1)

integer variable — integer variable

real variable real constant (5.1.1.2)

real variable — real variable

function correctly.

(6) The arithmetic IF statement (7.1.2.2) functions

correctly: IF Ce) kl, k2, k3 where e is an

arithmetic expression (6.1) of the form

integer variabel + integer constant

integer variable — integer constant

real variable + real constant

real variable — real constant S

and kl, k2, and k3 are statement labels.

(7) The simple formatted WRITE statement (7.1.3.2.3)

functions correctly: WRITE (u,f) k where u is a

logical unit number (1.1.3.1) , f is a FORMA T state—

mont label, and k is a list (7.1.3.2.1) of integer

and real variables. -

Tb. format statement contains nit Hollerith field

I •

9

descriptors (7 .2 .3 .8) , nX blank f ie ld descriptors

p (7 . 2 . 3 . 9) , 1w numeric f ie ld descr iptors (7 . 2 . 3 . 6. 1) ,

and Fw.d numeric f ield descriptors (7 . 2 . 3 .6 .2) .

(8) In order for the output report to have the correct

forma t , the use of the f i rs t character of a formatted

record for vertical spacing must function correctly

(7.1.2.4).

Two characters which are used in printing the report

are:

CHARACTER VERTICAL SPACING BEFORE PRINTING

1 Advance to first line of ne~ct page

blank One line

In addition to the preceding basic assumptions, the

following minimum capabilities are assumed for the routines :

(1) Integer variables consist of at least 16 bits of

which one is a sign bit.

(2) The system output device has at least 56 characters

per line.

(3) Real variables contain at least 16 bits in the

mantissa and 8 bits in the exponent.

S In order to appreciate the changes in scope made during the

ICVS project, it is essential that one understands what was con-

sidered elementary versus an advanced audit routine in the original

fdentification of the tasks. The following list shows the language

element areas originally chosen for elementary vs. advanced.

10 .
.

4 - .

S Also shown is a column for whe the r a given language e1em~ nt area

was tested in version 1.0 of the FCVS .

LANGUAGE ELEMENT AREA ORT CIN AL LEVEL VERSION 1.0

Comment lines Elementary Tested

Reference forma t blanks in Elementary Tested

variables statement labels

continuation of lines

FORTRAN reserved words

Simple Subroutine call Elementary Tested

Subroutine calls another routine Elementary Tested

Intrinsic functions Elementary Tested

DATA statement Elementary Tested

BLOCK DATA subprogram Elementary Deferred to a

later version

Blank COMMON Elementary Tested

Labeled COMMON Elementary Tested -

EQUIVALENCE statement Elementary Tested

EQUIVALENCE and COMMON Elementary Tested

DO loops — simple format Elementa ry Tested

CONTINUE statement Elementary Tested

Arithmetic IF statement Elementary Tested

Logical IF Elementary Tested

Unconditional GO TO statement Elementary Tested

-
.
. -

I -

11

LANGUAGE ELEMENT AREA ORLCINAL LEVEL VERSI ON 1.0

Assigned GO TO Elementary Tested

Computed CO TO Elementary Tested

TYPE statement Elementary Tested
S Integer a r i thmet ic tests Elementary Tested

Arrays — fixed dimensions , simple Elementary Tested

constant and variable subscripts

Repeated calls to a subroutine Elementary Tested

Inline arithmetic statement Elementary Tested

functions

- FUNCT ION subprogram Elementary Tested

S Multiple RETURN statements -
- Elementary Tested

Logical data Elemen tary Tested

Logical expr essions Elementary Tested

Simple sequential file I/O Elementary Tested

Character set Elementary Tested

Subroutines sharing COMMON Advanced Added**

Nested DO loops and extended Advanced Added**

range of a DO statement

S DO index tests Advanced Added**

S Real arithmetic tests — Advanced Deferred

adjustable accuracy

Double precision data S Advanced Deferred

Complex data Advanced Deferred

Arrays — arithmetic expressions Advanced Deferred

for subscripts

1. 12
— — —

S LANGUAGE ELEMENT AREA ORIGINAL LEVEL VERSION 1.0

EQUIVALENCE with C0~~1ON and Advanced Added**

S DIMENSION arrays

EXTERNAL statement Advanced Deferred

REWIND Advanced Added**

~~DFILE

BACKSPACE

READ
- WRITE S

I/O with implied DO loops Advanced Added**

Variable logical unit numbers Advanced Added**
S

- Binary READ and WRITE Advanced Deferred

S unformatted -

- - Scaling - in FORMAT statement - Advanced Deferr edS

F, B, I FORMAT field descriptors Advanced Added**

Evaluation of expressions — many Advanced Deferred

variables , arithmetic, relational

and logical

Assignment rules for expressions Advanced Added**

with a change in data type

Variable dimensioned arrays in Advanced Deferred
S

subprograms

External procedure names as Advanced Deferred

arguments in intrinsic function

references
•1

S

_______ ______

S

. -

S

-. ~S •~5_S SS5~~~~~~~~ — --—5——— —S—— --.-—— —- _1.3
—

I S
-

-

**Added elements were included in Version 1.0. Remaining

advanced elements are not included in Version 1.0, however , these

elements will be tested in future versions of the FCVS.

Additional manpower resources were added to the FCVS pro-

ject in late April 1976 as the number of routines to be written

had increased from fifty (50) to seventy—five (75).

Description of Statement Tests

The statement tests in the FCVS were built carefully from

I the foundation of the basic assumptions . There was a systematic

increase In the complexity of the language features tested as

succeeding FORTRAN audit routines-were~developed. Language

-
features other than . those in the basic assumptions were not

included in a test until they had been thoroughtly tested them-

selves. This method provides for the cross checking of test

failures and allows for the precise identification of problem
S

areas due to nonconformance to the language specifications or

other compiler errors and deficiencies. - -

S - The first several routines in the FCVS test the language

elements in the basic assumptions. Their correct execution

nsures that the failure of any test in the remainder of the

routines Is due to the improper implementation of the language

feature being tested .

14
-

_ _ _ _ _ _ _ _ _ _ _ _ _ S — —

S

A description of the f ir s t few tests for the Arithmetic

Assignment Statement is included to show how the tests build

upon previous tests. An Arithmetic Assignment Statement is of

the form :
-

variable name arithmetic expression.

The simplest form for the arithmetic assignment statement

is:

S
integer variable integer constant. S

-

The first audit routine which tests arithmetic assignment state—

- ments contains tests of the above form where the integer constan t

is unsigned, positively signed and negatively signed. The unsigned

and positively signed constants increase ~n absolute value in S

succeeding tests toa maximum of 32767, and the negatively signed

S
- constants decrease in value to --32766 .

The next form of the arithmetic assignment statement to be

• tested is:

integer variable — integer variable.

In order to teat this form the statements from the previous

•tests setting an integer equal to a constan t must be used. The

source code lines for these tests are:

integer variable —
S

Intege r variable 2 — integer variable 1,

where the integer constant assumes the values previously tested .

15
4 5_

5 •
S

—
— —

p -

This process is continued with tests of arithmetic assignment

statements of the form

integer variable — integer variable + constant,

integer variable — integer variable — constant,

integer variabel = integer variable + integer variable,

integer variable — integer variable — integer variable.

By developing tests in this manner, if a problem with a language

element appears in a particular construct, the problem is easily

identified in all other tests which employ the same type of con-

struct.

• Test Support Code - S

S The tests in the FCVS contain support source code which checks

the results of the language features tested and procedus output

indicating the results of each test. The support source lines

also contain statements which are executed if a test must be
S

deleted in order to compile a program. If the compiler cannot

handle a particular language feature which is being tested, that

code is deleted by placing a C in column 1 of the source lines

for that test. Dur ing execution , the program falls liunediately S

Into the test deletion source lines. - S

Section 9.2 of the 1966 FORTRAN Standard states “A program
S

part may not contain an executable statement that can never be
“2amecuted . Since the test deletion code is only executed when

a test is deleted, this specification required several IF state— S

4 5
- . 5

16
5

5 p

.

- - - .___
~~, __I__ ~

————-
-t

ments to be added to the support code. The IF statements refer

to statement labels which being lines of source code which are

not executed if the language element tested performs correctly.

S An example of the source lines for two tests of the arith-

metic assignment statement is given in Figure 1 to show the

test construction and the support code common to each test. Figure

2 contains the same tests but test number 227 has been deleted

S in this example. In the execution of these tests on a given

system , the Executive System will replace the X02 in the WRITE

statement with the implementor—defined logical unit number for

the printer. - S

• Audit Routine Outout Report S

S S The output report for each audit routine indicates whether

the individual tests ~n the routine passed , failed or were deleted .

A si~~ary of the results for each routine is printed at the end of

the output report. Figure 3 •is an example of the output report

for the audit routine FMOO4. This report shows that two tests in

this routine failed, and the computed and expected results are

given for these two tests. The comment lines within the program

or the program documentation would have to be consulted to deter—

mine what language elementS did not conform to the language

specifications and thus caused these tests to fail.

The Executive System S

The FCVS source library tape contains system independent

source programs with implementor—defined aspects such as logical

melt numbers yet to be resolved. The Executive System was

1~
S

—55- 5—
~~~~•-

•- . 
- S - ~-~- - - - •



S 
5~~~~~~~~~~~~~ 

-

5 . 

-

ill
• developed to build compilable programs from the FCVS source

library tape. The purpose of the Executive System is to handle

• the implementation problems which occur even with programs written

in Standard FORTRAN.

The Elementary Executive Routine was written for execut ion

on a minicomputer system and contains only those capabilities

expected of a system with limited resources. Because of this,

the Executive Routines are written in FORTRAN using only language

elements and features included in the basic assumptions.

The Elementary Executive Routine permits the selection of

a program from the FCVS source library tape by program identifier

S and the building of a compilable program file. 
- 

Resolution of

S implementor—defined logical unit numbers and update capabilities

by source line are performed as the program file is built. The

update capabilities include inserting a source line, replacing

a source line, deleting a source line, and changing a source line

to a comment line by placing a C in colu~~ 1.

Testing

During July and August 1976, the audit routines comprising

version 1.0 of the FCVS were tested on four systems: S

S 

UNIVAC 1108 Field Data compiler under EXEC—8

Data General NOVA 800 under RDOS version 3.0

• Digital Equipment Corporation PD? 11/70 under RSX—1IM

• General Electric FORTRAN IV compiler under the MARX

4 
.

- 
5~

S 

~~ timesharing system.

- 
.
.

• S

55 S 
S

. 5 - -  

p
_~~~~~ S_S... _ S _ •



- 

.

Milestones

The following chart shows the actual milestone completion

dates to develop the FCVS .

Matrix to Identify FORTRAN Language Elements 31 OCT 75

Programming Procedures Document 21 NOV 75

S FCVS Test Plan 5 26 MAR 76

S EXECUTIVE Rout ine Specifications 28 MAY 76

FCVS Tes t Specifications — Working Papers 11 JUN 76

• EXECUTIVE Routine Completed 26 JUN 76

Version 1.0 Test Routines Completed 04 JUL 76

FCVS Detailed Test Specifications Manual 09 JUL 76

Version 1.0 5

Testing Completed — FCVS LIBRARY Tape 13 AUG 76

Version 1.0 Produced

FCVS User ’s Guide Manual Version 1.0 13 AUG 76

Completed

SCOPE OF THE FCVS - -

S The purpose of the FORTRAN Compiler Validation System is

the testing of a compiler ’s conformance to the FORTRAN language

specifications. The tests in the FCVS are “positive” in that~

only statements permitted by the Standard are included. There 
S

is no “negative” tests of incorrect statement formats which a

compiler is suppose to flag as errors.

The FCVS also does not test vendor extension s to the 
S

language specifications , and does not perform an error analysis 
- •

k - - -
~~~ 

19
5

- 5 - 55

on the results of executing the Basic External Functions supplied

by FORTRAN processors. The FCVS is not designated to measure the

efficiency of the object code generated or the performance char-

acteristics of a FORTRAN compiler .

FUTURE FCVS DEVELOPMENT

X3J3 has developed a draft proposed revised FORT RAN Standard con-

sisting of a full language and a subset language to replace

American Standard FORTRAN, X3.9—l966. X3J3 has also recommended

withdrawal of X3.lO-l966, Basic FORTRAN since a FORTRAN subset is

defined in the revision to X3.9—1966. The proposed revision is

in the process of being accepted by ANSI and it is anticipated
S

in the “near” future there will be a new FORTRAN Standard.

A study of the - draft revised Standard and associated

S j appendicies reveã~s that programs conforming to the 1966 Standard

will also conform to the revised Standard . The changes to FORTRAN

from X3.9—l966 to the X3J3 revision were made “only when such

changes were necessary to correct an error in the previous

standard or to add to the power of the FORTRAN language in a

significant manner . In addition, such changes were only con—

sidered when it was felt that the change would not affect •

significant number of progr ams ”3 .
S

The FCVS developed for the 1966 Standard will be the founda—

tion for an FCVS for the complete revised Standard . Major

additions to th. current FCVS will be required to test the new

language features in the revised Standard. The motivation and

20
— 5 5 5555_ 5 5~~*55

- 5

—55

philosophies prev~ous 1v described for the current FCVS

remain essentially 55~~tact in developing a compiler validation

system for the complete revised language Standard .

The FORTRAN Data Base Committee of CODASYL is developing

a data base faci l i ty to allow a FORTRAN user to manipulate data

bases. The data base facility is based on both the CODASYL Data

Base Facility and the revised FORTRAN Standard . A working docu-

ment of the FORTRAN Data Base Conunitte, CODASYL FORTRAN Data
7

Base Facility Journal of Development , describes a set of data

manipulation language statements and data definition language

statements “intended to be in the spirit of FORTRAN ” . S

If the FORTRAN data base facility is accepted by the FORTRAN S

Comsunity then data base validation routines would be developed

for inclusion in the FCVS. The growth in the use of data base

concept. for large and small scale computer systems makes valida—
S

tion techniques for host language interfaces important.

CONCLUS IONS

The FORTRAN Compiler Validation System provides a tool for

measuring a compiler’s conformance to the FORTRAN language speci—

ficationa. Properly administered , the FCVS will, promote impro~e—

ments and eliminate compiler deficiencies from vendor supplied

software. The FCVS will be used by the ADPE Selection Office ,

Department of the Navy , in the procurement process. It is an

21

5-— — 5- - - 5 5 -
-

- --

55

-5

~~~~~~~~~~ 

-
~~~~~~~~~~~~ 55

~~ ~~~~~~

.

S -

important addition to procurement procedures and the FCVS will

ensure the selection of computer systems with compilers that

support the FORTRAN Standard .

The FCVS is now available to the user community. Any comments

or suggestions on the FCVS will be appreciated and should be

addressed to: S

Department of the Navy

Software Development Division

ADPE Selection Office

Washington , D. C. 20376

22
________________________ - - •~~~~~—

-

~~~5 - S_~~ 

-
~~~~~~~ S


55 --
-- -5 - - - -S~~~~~~~~~~~~ -

C
C TEST 22~ Tl- IROu~ H 2:.’4 USE PARENTHESES TO GROUP ELEMENTS IN AN
C. AF~ITH~tL~TIC EXPRESSION.

2271 COrIT I FlUE
I’ITNUM = 227

C
C **** TEST 227 ****C INTEGER VARI AE :LE = (2 + INTEGER VARIAE:LE) + 4
C

IF (ICZERO) S’2270~ 2270, 32270
2270 CONT INUE

IVONO1 = 3
S IVCOMP = (2+ IVONOI) + 4

GO TO 42270
32270 IVOELE = IVE’ELE + j

S W RITE C):02, S(~OO3 I VTNIJN -

IF (ICZERO) 42270, 2281, 42270
42270 IF (IVCOI1P — 9) 22270, 12270, 22270
12270 IVFASS = IVPASS + 1

WRITE C XO2, 80001) IVTNUM
GO TO 2281

22270 IVFAIL = IVFAIL + 1 .

IVCORR = 9
WR ITE (X 02, 00004) IVTNUM, IVCOMP , IVCORR

2281 CONTINUE
IVTNUM = 228

C 5’
.

IC **** TEST 228 ****C INTEGER VARIABLE = 2.+ (INTEGER VARIABLE + 4)
C

IF (ICZERO) 322$~0~ 2280, 322802280 CONTINUE S

IVONOI = 3
IVCOMP = 2 + (IVONOL+4)
00 10 42280 .

-

32280 IVDELE = IVDELE + 1 5 - S

WRITE (X 02~80003 IVTNUM - . 5
5

IF (ICZERO) 42280, 2291, 42280 5 - . 5

42280 IF (IVCOMP — 9) 22280~ 12280. 22280
12280 IVPASS = IVPASS + 1

WRITE (XC2.80001) IVTNUM
GO TO 2291 ,

.22280 IVFAIL. IVFAIL + I
S ZVCORR=9 - -

WRITE (X02.80004) IVTNUM, IVCOMP .IVCORR

IICURE 1
S S

-

Exaa~le of Source Lines for Test of Arithmetic Assignment
Statement - S

- - 5 - 5 - - -
5- - -5- - SSj - 5-

5-
55 55

-

~~

I
, -

C TEST 225 TIIROUGI I 234 USE FARENTHESES TO GROUP ELEMENTS IN AN
C: ARITIIIIETIC EXFRES .ION.
C

2271 i:c’!.ITINI_IE
IVTNLIM = 227

C
C **** TEST 227 ~*a*
C INTEGER VAR IAE- :LE = (2 + INTEGER VARIAE:LE) + 4
C

IF (ICZERO) 32270, 2270, 32270
2270 CONTINUE AS

C IVONO 1 = 3 -

C IVCOMP = (2+IVONO1) + 4
C GO TO 42270
32270 IVE’ELE = IVE’ELE + 1

WRITE O~O2, 80OQ:~~ IVTNUM
IF (ICZERO) 42270, 2281, 42270

42270 IF (IVCOt’IP — 9) 22270, 12270, 22270
12270 IVPASS = IVPASS + 1

WR ITE 0~02,80001 IVTNUM
G0 T0 2281

22270 IVFAIL =-IVFAIL * 1
IVCORR = 9
WRITE CX 02, ~.O0O4) IVTNLIM, IVCOMP , IVCORR

2281 CONTINUE
S IVTNUI’l = 228

C - -

C **** TEST 228 **** S

C INTEGER VAR IABLE = 2,+ (INTEGER VARIABLE + 4)
F

C

IF (ICZERO) 32280, 2280, 32280
2280 CONTINUE

IVONO1 = 3
IVCOMP = 2 +(IVONOI+4)
GO TO 42280

32280 IVDELE = IVDELE + 1
WRITE (X02,80003) TVTNUM
IF (ICZERO) 42280, 2291, 42~80 •

42280 IF (IVCOMP — 9) 22280, 12280, 22280
5

12230 IVPASS = IVPASS + 1
WRITE (102,80001) IVTNUM . .

GO TO 2291 ,
22280 IVFAIL = IWAIL + I

IVCORR=9 S

WRITE (X02, 80004) IVTNUM. IVCOMP ~ IVCORR

11LuRz 2 S

S

. Example of Test Deletion Procedure

S
. 24

-
~~~~~~

-5--1 
S _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _



5-5 S 5 5-~~~~~~~~

FORTRAN COF’lP I LER VAL I DAT I ON SYSTEM

DEF’ARTNEMT OF THE NAVY
AEIPE ~ELEC.I I UN orr I CE
SOFTWAr ~E D EVE LOPM EN T DIVIS ION S

F’RE—RELEASE FORTRAN 19/~ . — LIMITED EIISTRI.

FOR OFFICIAL USE ONLY — COPYRIGHT 1975

TEST PASS/FAIL COMPUTED CORRECT

21 PASS
22 PASS -

23 FAIL 0 1
24 PASS
25 PASS
26 PASS -

27 PASS
28 PA~S

rr1~j,j S

30 FAIL —2 2
31 ‘ PASS

. 32 PASS •

END OF PROGRAM FMOO4

2 ERRORS ENCOUF~TERED10 TESTS PASSED
0 TESTS DELETED

- ,  
. 5

S 

S 
S~~

S S 
FIGURE 3 

-

Example of Audit Routine Output Report,

S •
S S~~~~

‘ : q~~~~
’ ‘

. - •
S
’ • •

S

_ . 

S S

25
4 - _______________ — - - - - —__________________________________________________________________________ - ___________________________



I.e 
. S

REFERENCES -

1. Sammct , J. E., Progr ammi n c~~La~~ ua~ cs: lI~ siory and Fundamentnis,

Prentice—Hall , Incorporated , 1969.

2. American Standard FORTRAN, X3.9—1966, American National

Standards Institute Incorporated , New York , 1966.

3. American National Standards Committee X3J3, Draf t Proposed

ANS FORTRAN , ACM Sigplan Notices , Vol. 11, No. 3, 1976 March.

4. FCVS Detailed Test Specifications, available from the National

Technical Information Service, US Depar tment of Commerce,

5285 Por t Royal Road , Springfield , Virginia , 22151, reference

ADAO3O211.

5. Hopper, Captain Grace Murray , USNR , “U. S. Navy FORTRAN

Tests”, March , 1971, unpublished Department of the Navy

Documentation .

6. Holberton, F. E. and Parker , E. G. ,  “NBS FORTRAN Test Pro-

grams”, U. S. Department of Commerce, Na tional Bureau of

Standards , NBSIP 73—250, June 1973.

7. CODASYL FORTRAN Data Base Facility , CODASYL Journal of

S Development, Version 1.0, August 1, 1976, published by

CODASYL FORTRAN Data Base Committee.

1 
‘ . 5 5 .

a- - 

S

/

26
_ _ _ _  S _ _ _  ___________5S

~~~~~~ 


